

Opportunity Title: Inner Magnetosphere Response to Solar Wind Structures **Opportunity Reference Code:** 0154-NPP-NOV23-GSFC-HelioSci

Organization National Aeronautics and Space Administration (NASA)

Reference Code 0154-NPP-NOV23-GSFC-HelioSci

Application Deadline 11/1/2023 6:00:59 PM Eastern Time Zone

Description The response of the Earth's inner magnetosphere ring current and radiation belts to solar wind structures such as Coronal Mass Ejections (CMEs), Corotating Interaction Regions (CIRs), high-speed streams and other structures is highly variable. There are many competing pathways by which these structures can increase or decrease inner magnetospheric populations. For example, dayside reconnection sets up the convection electric field that directly drives the ring current populations. As ring current particles drift into regions of stronger magnetic field, pitch-angle anisotropies can generate electromagnetic ion cyclotron (EMIC) and whistler mode chorus waves. EMIC and whistler waves can interact with energetic ion and electron populations, respectively, resulting in radiation belt dropouts and/or enhancements. Similarly, the position of the magnetopause, which results from pressure balance and reconnection, controls the effectiveness of magnetopause shadowing, another known source of radiation belt dropouts. The generation of ULF waves is directly driven by the dayside interaction leading to outward radial transport of outer radiation belt populations. This research opportunity involves modeling both the solar wind magnetopause interaction (reconnection, pressure balance, ...) and the inner magnetospheric response (radiation belts, ring current, and the wave environment) using tools such as global MHD simulations, and coupled bounce averaged Vlasov kinetic models of the radiation belts.

Location:

Goddard Space Flight Center Greenbelt, Maryland

Field of Science: Heliophysics Science

Advisors:

Alex Glocer alex.glocer-1@nasa.gov 301-286-9475

Mei-Ching Fok mei-ching.h.fok@nasa.gov 301-286-1083

Applications with citizens from Designated Countries will not be accepted at this time, unless they are Legal Permanent Residents of the United States. A complete list of Designated Countries can be found at: <u>https://www.nasa.gov/oiir/export-control</u>.

Eligibility is currently open to:

Whether you are just starting your career or already at a senior level, ORAU offers internships, fellowships, research opportunities, and contract positions that can provide you with invaluable experience. Download the ORAU Pathfinder mobile app and find the right opportunity to propel you along your career path!

Opportunity Title: Inner Magnetosphere Response to Solar Wind Structures **Opportunity Reference Code:** 0154-NPP-NOV23-GSFC-HelioSci

- U.S. Citizens;
- U.S. Lawful Permanent Residents (LPR);
- Foreign Nationals eligible for an Exchange Visitor J-1 visa status; and,
- Applicants for LPR, asylees, or refugees in the U.S. at the time of application with 1) a valid EAD card and 2) I-485 or I-589 forms in pending status
- Eligibility Degree: Doctoral Degree. Requirements